Idebenone delays the onset of cardiac functional alteration without correction of Fe-S enzymes deficit in a mouse model for Friedreich ataxia.
نویسندگان
چکیده
Friedreich ataxia (FRDA), a progressive neurodegenerative disorder associated with cardiomyopathy, is caused by severely reduced frataxin, a mitochondrial protein involved in Fe-S cluster assembly. We have recently generated mouse models that reproduce important progressive pathological and biochemical features of the human disease. Our frataxin-deficient mouse models initially demonstrate time-dependent intramitochondrial iron accumulation, which occurs after onset of the pathology and after inactivation of the Fe-S dependent enzymes. Here, we report a more detailed pathophysiological characterization of our mouse model with isolated cardiac disease by echocardiographic, biochemical and histological studies and its use for placebo-controlled therapeutic trial with Idebenone. The Fe-S enzyme deficiency occurs at 4 weeks of age, prior to cardiac dilatation and concomitant development of left ventricular hypertrophy, while the mitochondrial iron accumulation occurs at a terminal stage. From 7 weeks onward, Fe-S enzyme activities are strongly decreased and are associated with lower levels of oxidative stress markers, as a consequence of reduced respiratory chain activity. Furthermore, we demonstrate that the antioxidant Idebenone delays the cardiac disease onset, progression and death of frataxin deficient animals by 1 week, but does not correct the Fe-S enzyme deficiency. Our results support the view that frataxin is a necessary, albeit non-essential, component of the Fe-S cluster biogenesis, and indicate that Idebenone acts downstream of the primary Fe-S enzyme deficit. Furthermore, our results demonstrate that Idebenone is cardioprotective even in the context of a complete lack of frataxin, which further supports its utilization for the treatment of FRDA.
منابع مشابه
Idebenone and reduced cardiac hypertrophy in Friedreich's ataxia.
BACKGROUND Friedreich's ataxia encodes a protein of unknown function, frataxin. The loss of frataxin is caused by a large GAA trinucleotide expansion in the first intron of the gene, resulting in deficiency of a Krebs cycle enzyme, aconitase, and of three mitochondrial respiratory chain complexes (I-III). This causes oxidative stress. Idebenone, a short chain quinone acting as an antioxidant, h...
متن کاملFriedreich ataxia: the oxidative stress paradox.
Friedreich ataxia (FRDA) results from a generalized deficiency of mitochondrial and cytosolic iron-sulfur protein activity initially ascribed to mitochondrial iron overload. Recent in vitro data suggest that frataxin is necessary for iron incorporation in Fe-S cluster (ISC) and heme biosynthesis. In addition, several reports suggest that continuous oxidative damage resulting from hampered super...
متن کاملA phase 3, double-blind, placebo-controlled trial of idebenone in friedreich ataxia.
OBJECTIVE To assess the efficacy of idebenone on neurological function in patients with Friedreich ataxia. DESIGN Randomized, double-blind, placebo-controlled intervention trial. SETTING Children's Hospital of Philadelphia and the University of California at Los Angeles. PARTICIPANTS Seventy ambulatory pediatric patients (age, 8-18 years) with a baseline International Cooperative Ataxia R...
متن کاملMolecular and Clinical Investigation of Iranian Patients with Friedreich Ataxia
Background: Friedreich ataxia (FRDA) is an autosomal recessive disorder caused by guanine-adenine-adenine (GAA) triplet expansions in the FXN gene. Its product, frataxin, which severely reduces in FRDA patients, leads to oxidative damage in mitochondria. The purpose of this study was to evaluate the triple nucleotide repeated expansions in Iranian FRDA patients and to elucidate distinguishable ...
متن کاملCardiomyopathy in Friedreich ataxia: exemplifying the challenges faced by cardiologists in the management of rare diseases.
Friedreich ataxia (FA) is an autosomal recessively inherited neurodegenerative disease that most often presents in childhood or in young adulthood. A substantial proportion of patients with FA also develop a cardiomyopathy that usually presents as left ventricular hypertrophy (FA-CM). The mean life expectancy is significantly reduced to 40 years, and 60% of patients with FA die from cardiac cau...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 13 10 شماره
صفحات -
تاریخ انتشار 2004